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TRANSIENT-STATE FLOW OF A CONDUCTING LIQUID IN AN MHD GENERATOR
AT CONSTANT FLOW RATE IN THE PRESENCE OF SIDE WALLS

A. G. Ryabinin and A. I. Khozhainov

Zhurnal Prikladnoi Mekhaniki | Tekhnicheskoi Fiziki, Vol. 8, No. 2, pp. 31-34, 1967

It is usual in studies of transient [nonsteady] flow for a viscous incom-
pressible conducting fluid in an MHD channel to take the distance be-
tween the side walls as infinite, which allows the initial equations to be
simplified, these reducing to a single equation for the velocity if the
magnetic Reynolds number is small [1~3], A real system has a finitera=-
tio of the sides, so it is desirable to establish the effects of the side walls,

Consider the transient-state flow at constant flow
rate with an arbitrary load coefficient, on the as-
sumption Ry, « 1, This corresponds to adjustment of
the output of an MHD generator by alteration of the
magnetic induction.

We assume that the device which drives the liquid
has a fixed characteristic Q = f(p), which allows the
flow rate Q to he kept constant as the pressure p
varies,

The equations of magnetic hydrodynamics may be
put as

pdv [ 0t +p(vy)v = — Vp 4 nav + [jx B],

j=o{E 4+ [vxB]}, rotE = — dB ] at,

j=prtrotB, divB=divv=0, 1)

in which v is the flow velocity, B is the magnetic in~
duction, E is the electric field, j is current density,

and p, 1, 0, and p are, respectively, the density, dy-
namic viscosity, conductivity, and permeability.

The long channel is of rectangular cross section,
the sides x = £b/2 beingthe nonconducting poles of the
magnet, while the sides y = £a/2 are conducting elec~
trodes joined through the load resistance r (figure);
here a » b, but a is finite, Then Eqgs. (1) become
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0Ey - iﬂ o 0B,
o oy a
jx =0Ey, j,= —u0B, )0z =c(Ey+ v.B,). 2)

If @ > b we may put 8Ey/0x > 8Ey/MBy. Further,
the orders of magnitude of the other terms in the sec-
ond equation in (2) are as follows:

9E, 0B B, | 0E b
oy P g, (—az—”b | 0.Ba |~ Ry g
Ry =plURy,, Rp=abf(a+d),

in which Ry, is the magnetic Reynolds number, Ry, is
the hydraulic radius of the channel, U is the mean flow
speed, and T is the characteristic time. If b/UT € 1,
we may assume that Ey is independent of x and is a
function of time alone.

For steady-state problems and @ > b, we may make
the approximation E; = constant, which agrees with
experiment [4].
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Then system (2), with Chm's law applied to the ex-
ternal circuit, reduces to one equation for the velocity:*
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—(;?—l—zp(t)-'—V(——a—iz——i—E—z‘)”f—k'—ha U M—‘rhg Uy
_ __top
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M=RB,.Vs/1, k=r(r+r)" r=ajchl, (3)
in which Mis the Hartmannnumber, k is the load factor.
and r; is the internal resistance of a generator of
length [ .

In this case, the pressure gradient is a function of
time but is uniquely related to the velocity change, the
relationship being readily found by integrating (3) over
the channel cross section, subject to the condition of
constant flow rate:

v o 0% a2
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Then (3) and (4) together give the following inte-
grodifferential equation:
2 b Ysa o2 o2
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+v<w+%>+%(U—v), 5)

* The subscripts to the velocity are omitted here and
subsequently.
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the boundary conditions for (6) being
v |x“—_-il/gb =V Iy=i‘/;a =0 s (6)
and the initial conditions being given as

v = v, (z, y, 0),
M=M, P=P, for =0, (7)

The magnetic field is changed instantaneously at
the initial instant, and the electromagnetic-pressure
loss changes simultaneously, which is physically true
because the electromagnetic transients are of very
short duration relative to the MHD transients:

v=uv(z,y, 8, M=M,

P =P +P,(t) for 1>0.

The solution to (5) is sought in the form
v@ N =F@ )+ B el ),  6)

in which F(x,y) corresponds to the steady-state flow.
Substitution of (8) into (5) gives three differential
equations, whose solution is known [4]:
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The coefficients oy and By, are related by
=M% |R;*—8, -

The solutions are put as

ch N = Ay

| m+l
F (%, y) = 4Dr 21 ( A>7 - (1‘cth1/2b) cos—,  (9)
Pn (8) = Aexp(— “nzt) ’ (10)
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Nypt= M R?+ A2l a%, W =B, + A2 /0%,

Am=n(2m—1).

1t follows from (9) and (11), subject to constancy of
flow rate, that

1}2 men = th Wmn 11‘2b
or
Yob | Wann | = tg | W | /ab
since Wi, =< 0.
We take the Laplace operator of (9) and integrate the

result over the cross section of the channel to get the
following expression for Dp:
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The coefficients Dy of the series are determined
for t = 0 from
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It follows from (12) that
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:_%‘ Dyy [1_ cos]Wm,,]x]
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n=1 mn

The functions gmn = 1 — (cos|Wypn|X)/(cos| Wpn|b/2)

are orthogonal in the range +b/2, so

Dy Nob | W, 21 —2{W, 2 |th Npylfsb

Dy = 2 bW e NoE LW, 2 —

_ Dy Nomb| W, 2| —2| W, 2 |th Ny, Yab
(/2 bNgpm)* Nyt + | W, 2

This solution allows us, from (4), to calculate the
change in the pressure loss in the channel of an MHD
generator when the field is switched on (M = 0) and
when the power output is adjusted via the magnetic in-
duction.

As t — w this solution agrees with the one pre-
viously obtained [4] for steady-state flow in a similar
channel.

Further, as M — 0 it becomes the known solution
for ordinary hydrodynamics.
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